Acta Informatica 35, 401-420 (1998) m@

i

© Springer-Verlag 1998

DNA computing, sticker systems, and universality

Lila Kari 1, Gheorghe Faun?, Grzegorz Rozenberd, Arto Salomaa’,
Sheng Yd

1 Department of Computer Science, University of Western Ontario, London, Ontario,

Canada N6A 5B7

2 Institute of Mathematics of the Romanian Academy, P.Ox Bo— 764, RO-70700 Bucurtis
Romania

3 Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,

The Netherlands

4 Academy of Finland and Turku University, Department of Mathematics, FIN-20500 Turku, Finland

Received: 10 October 1996 / 16 April 1997

Abstract. We introduce thesticker systemsa computability model, which is an
abstraction of the computations using the Watson-Crick complementarity as in
Adleman’s DNA computing experiment, [1]. Several types of sticker systems
are shown to characterize (modulo a weak coding) the regular languages, hence
the power of finite automata. One variant is proven to be equivalent to Turing
machines. Another one is found to have a strictly intermediate power.

1. Introduction

The sticker systemintroduced here are language generating devices based on
the sticker operation which, in turn, is a model of the techniques used by L.
Adleman in his successful experiment of computing a Hamiltonian path in a
graph by using DNA, [1]. We recall some details of the experiment in order to
see the roots of our models.

One knows that DNA sequences are in fact double stranded (helicoidal) struc-
tures composed of four nucleotides, A (adenine), C (cytosine), G (guanine), and
T (thymine), paired A—T, C-G according to the so-called Watson-Crick com-
plementarity. If we have a single stranded sequence of A, C, G, T nucleotides,
together with a single stranded sequence composed of the complementary nu-
cleotides, the two sequences will be “glued” together (by hydrogen bonds), form-
ing a double stranded DNA sequence. Figure 1 illustrates this operation.

Using this biochemical reaction, Adleman has proceeded as follows, in
searching Hamiltonian paths in a graph:

* Research supported by the Academy of Finland, project 11281, the Spanish Secretaria de Es-

tado de Universidades e Investigacion, SAB95-0357, and by the National Sciences and Engineering
Research Council of Canada, Grant OGP0041630

402 L. Kari et al.

5-AAACTGGAG-3 + 3J-TTTGACCTC-5

; AAACTGGAG
TTTGACCTC
Fig. 1.

— codify the nodes by single stranded DNA sequences of length 20 and put all
these strings in a test tube,

— if the nodei is codified by the string; and the nodg is codified by the
stringx;, and there is an arrow from nodeo nodej in the graph, then add
to the test tube a single stranded DNA sequeyicsuch that ifx, = x/x/’,
X =x/x", each ofx/,x", ', x" being strings of length 10, theyy = y;Vy',
wherey; is the Watson-Crick complement gf andy;’ is the Watson-Crick
complement ofx/.

Due to the complementarity, the striyg will match the corresponding parts of
X andx;, linking them and producing in this way a sequence of length 40, as
illustrated by Fig. 2.

! 12 / 1
% % % %

Fig. 2.

This “domino game” can continue, identifying longer and longer paths in
the considered graph. By a filtering procedure which is not of interest here, one
then can check whether or not paths with specified properties exist (for instance,
Hamiltonian paths).

We extract from this experiment only the basic ingredient: the operation of
prolonging to the right a sequence of (single or double) symbols by using given
single stranded strings, matching them with portions of the current sequence
according to a complementarity relation.

The formal model of this operation is theticker operationdefined in the
following section.

This operation can be used in building a generative/computing device: start
from a given set of incomplete double stranded sequences (axioms), plus two
sets of single stranded complementary sequences. Iterating the right prolongation
using elements of these latter sets, we get “computations” of possibly arbitrary

DNA computing, sticker systems, and universality 403

length. Stop when a complete double stranded sequence is obtained, that is when
no “sticky end” still exists. We obtain in this way a language.

The generative power of several variants of such mechanisms is investigated
here. The unrestricted case corresponds to the Adleman experiment and it is
proved to characterize — modulo a weak coding — the regular languages. When
an additional restriction is imposed, namely to use the same sequence of com-
plementary strings from the two initial sets, then, rather surprisingly, we get a
characterization of recursively enumerable languages. Whether or not such a re-
striction can be implemented in the DNA framework is a practical problem which
we cannot answer, but providing that it can be done, computationally universal
DNA “computers” could be designed just using the Watson-Crick complemen-
tarity, plus the techniques required in the mentioned restriction.

This reminds us the results obtained in a series of papers (see references in
[10], [13], [16]) about the possibility of designing universal (and programmable)
DNA “computers” based on the operation splicing introduced in [9] as a
model of the recombinant behavior of DNA under the influence of restriction
enzymes and ligases.

2. The sticker operation

LetV be an alphabet (a finite set of abstract symbols) endowed with a symmetric
relation p (of complementarity p C V x V. Let # be a special symbol not in
V, denoting an empty space (th&ank symbol).

Using the elements of U {#} we construct thecompositesymbols of the

following sets:
(3) ~{()1apev.@ner),

(v)={(2)1mev}
()= () 1=ev):

W)=y) s

#\” V*
sw=(y) v (%)
and we call the elements of this seell-started sequencds general X* is the
set of all strings, including the empty one denotedXyycomposed of elements

of X, andX™ is the setX* — {\}). Stated otherwise, the elementsWif(V) start
with pairs of symbols irV, as selected by the complementarity relation, and end

We denote

where

404 L. Kari et al.

.) - [# . . - .
either by a suffix consisting of pa|r€a> or with a suffix consisting of pairs

b # b .
(#>, fora,b € V (the symbols<a> , (#) are not mixed).

The sticker operation, denoted hy is a partially defined mapping from
W,(V) x S(V) to W,(V), defined as follows. Fok € W,(V),y € S(V),z €
W,(V), we write

nx,y) =z
if and only if one of the following cases holds:

1. X = (Si) (Zt) (ak#;rl) (ak#:r) (ak+;+l) (ak’;+p)7
_(# #
y_(cl)..(q),
() B) ()
fork >0,r >1,p>1,

g eV, 1<i<k+r+p, bheV,1<i<k, ¢geV,1<i<r,
and @+i,G) € p,1<i <r;

Z= R
bl bk C1 G Cr+1 Cr+p
fork >0,r >0,p>0,r+p>1,

a eV, 1<i<k+r,beV,1<i<k, ¢geV,1<i<r +p,
and @+i,G) € p,1<i <r;

2 (5) () (o) (o) () (o)
’ b/ " T\bc/ \bks1/) "\ besr) \brwrsr/) T \ Brarsp)
C1 Cr
y:(#)"'(#)’
2= () (5) (o) (5) (o) ()
bl bk bk+1 bk+r bk+r+1 bk+r+p ’
fork >0,r>1p>1

g eV.1<i<k beV,1<i<k+r+p geV,1<i<r,
and Gi,bki) €p,1<i <r;

(@) @) ()

DNA computing, sticker systems, and universality 405
= () ()) (%)
y 4) g 4) Ua)
= (5) () () (o) G (5)
by) \ b bt) Ubesr 4) Uw)

fork >0,r >0,p>0,r+p>1,

a €V, 1<i<k, beV,1<i<k+r,¢eV,1<i<r+p,

and Gi,bx+i) € p,1<i <r.

In case 1 we add complementary symbols on the lower level without com-

pleting all the blank spaces. In case 2 we complete the blank spaces on the lower

level of x and possibly add more composite symbols of the f riﬁ . Cases 3

and 4 are symmetric to cases 1 and 2, respectively, completing blank spaces on
the upper level of the string.
Figure 3 picturally illustrates these cases.

X

Case 1:

y
X
Case 2:
l
y
X y
Case 3: ’—y:] l
X y
Case 4: ’—\l—‘ l

Fig. 3.

Note that in all cases the strirgmust contain at least one composite symbol
and that cases 2 and 4 allow the prolongation of “blunt” stringé/ifV): when
r = 0, there is no blank position ir.

Of course, for stringx, y which do not satisfy any of the previous conditions,
1(X,y) is not defined.

3. Sticker systems

Using the sticker operation we can define a generating/computing mechanism as
follows:

A sticker systenis a construct

406 L. Kari et al.

Y= (VapaAv Bd»Bu)7
whereV is an alphabetp C V x V is a symmetric relation oW, A is a finite

. - #\"
subset ofW,(V) (of axioms), andBy and B, are finite subsets O(V) and

AN .
(#> , respectively.

The idea behind such a machinery is the following. We start with the se-
guences inA and we prolong them to the right with the stringsBg, B, ac-
cording to the sticker operations (the element8gfare used on the lower row,
down and those oB, are used on thepperrow). When no blank symbol is

. . \A
present, we obtain a string over the alphaéq) . The language of all such

strings is the language generated-y ’

Formally, we define this language as follows.
For two stringsx,z € W,(V) we write

X =z iff z=p(x,y) for somey € By UB,.

We denote by =* the reflexive and transitive closure of the relatics .=
A sequence; == Xp = ... = X, X1 € A, is called acomputationin -

*

(of lengthk — 1). A computation as above tompleteif x € ($) (no blank

P
symbol is present in the last string of composite symbols).

The language generated by denoted byL(v), is defined by

*
L(v) ={w € <x) | X =" w, x € A}.
P

Therefore, only the complete computations are taken into account when defin-
ing L(v). Note that a complete computation can be continued since we allow
prolongations starting from blunt sequences.

One sees the close resemblance with the operations used in the Adleman
experimentBy corresponds to the codes of graph nod&scorresponds to the
complementary strings identifying the arrows in the graph (or conversely). The
fact that we use here also a given set of axioms (and, in several results, a weak
coding is applied to the language of words of composite symbols generated by
our devices) adds flexibility to the model and makes it more similar to usual
generating mechanisms investigated in formal language theory.

. (VAN
A complete computationt; = X, = ... = X, X3 € A X € v) with
. . P

respect toy, is said to be:
— primitive if no properly initial part of it is complete;
— balancedf in each stepg == x;+1 one uses a sticker operation corresponding

to cases 2 or 4 in Sect. 2. Moreover, cases 2 and 4 alternate from a step to

the next one.

DNA computing, sticker systems, and universality 407

Thus, in a primitive computation we do not use sticker operations as in cases
1 - 4 withp = 0, except in the last step. In a balanced computation we allow
p = 0, but from a step to the next one we have to change th&sd, from
which we take the string to be used.

. AN
Let us denote byp(v), Lo(7), Lpp(v) the languages of the stringse (V)

obtained by a complete computation-pthat is primitive, balanced, both pr[i)m—
itive and balanced, respectively.

Assume now that the strings in the sd3g, B, are labelled in a one-to-
one manner by natural numbers from 1 to cBig(« € {d,u}; denote by
€, : By, — {1,...,cardB,)}, o € {d,u}, the labellings. For a computation

V *
D:ixi=X=...= X, xleA,xke(V> ,
P

and for 1<j <k — 1, we denote

o . _ ea(y)7 if Xj+1 = /’L(Xjay)7y € Baa
Cally = X21) = { A, otherwise,

and we define
€.(D) = e, (X1 == X2)en (X2 == X3) ... €, (Xk—1 == Xk),

for @ € {d,u}. We say thaty(D) is the d-control word and, (D) is the u-control
word associated witD.

A computationD such thategy(D) = e,(D) is called coherent When
les(D)| = |eu(D)| (where|x| is the length of the string) we say thatD is
afair computation.

We denote byl.(y) andL;(y) the languages of the strings (%) that

are obtained by a coherent complete computation and, respectivefy, by a fair
complete computation in. Clearly, each coherent computation is also fair.

By the definition,L,(v) C L(v), for all « € {p, b, pb,c,f}.

We denote bySL, PSL, BSL, PBSL, CSL, F#hte families of languages of
the form L(v), Lp(7), Lo(7), Len(7), Lc(7), Lt (7), respectively, defined as above.
(By REG and RE we denote the families of regular and recursively enumerable
languages, respectively.)

In the following sections we will investigate these six families of languages
generated by sticker systems. We would also like to investigate coherent prim-
itive, coherent balanced, coherent primitive and balanced languages, as well as
fair primitive, fair balanced languages etc. (Note that a balanced computation is
not necessarily a fair one, because it can start and stop in the saig, Bgj.

But we will not consider them in this paper.

408 L. Kari et al.

4. Characterizing the regular languages

We now begin our investigations concerning the generative capacity of sticker
systems. We will first show in this section that many of the basic variants yield
only regular languages. Then we show that each regular language can be rep-
resented as a weak coding of a language generated by a sticker system of one
of these basic types. (eak codingis a morphismh : V* — V. such that

h(a) € Vo, U {\} for all a € V. If h(a) € V, for all a € V4, thenh is called a
coding)

Lemma 1. SLC REG.
Proof. Let v = (V, p, A, By, By) be a sticker system. We denote
d =max{|x| | x € AUBy UB,}.
We construct the right-linear gramm@ = (N, T, S, P) with

1G)- G- [(2)- () raev

1<i<k1<k<d}
U {S, X},

Te),

andP contains the following rules:

1) s (2 (B (%)

a
f
o (2

N

(%))
. (Z:) (a”;) (a"?;k) €A

[l (]

. .. €A
bn bn+1> bn+k

_,,
o
=
. i .
L

In all casesa,bj e V,1<i <n+k,andk >1,n>0.

21 [(2) (2] ((31)-~-<Z:> () ()]

for(i)... ti)eBdwithm<n,
22) [(11)...(1;)}%<#21)...<2:)x,
or (2) o (0) e

DNA computing, sticker systems, and universality 409

29 [0 (1= () ()) ()
for (bl) (bm> € By with m > n.

(We prolong the current terminal string of symbt(l%) € (x> to the
14

right, using an element d;.)

@16 G0 @16 2]

)eBuWithm<n,

2 [(5) () zag)zi)w(E:)K
23 [(5) (o)) =) () [

for (11)(&") € By with m > n.

Wk

. . \%
(We prolong the current terminal string of symbo{lg) € (V) to the

P
right, using an element d,.)

In all rules of types 2),3.i),i = 1,2,3, the symbols[(?) (a”)}

G) (s
a1 x> [(5)- (7)) for(":)#... 0
a5 [(0) ()]t () (2 e me

(A complete computatlon can be continued using these rules.)

)] respectively, are arbitrary symbols M.

(a“) €By, n>1,

5) X — A

It is easy to see that(G) = L(v): at every step we can use an elemenBgf
or an element 0B, such that the current sticky end is shorter tidarTherefore,
the terminals inN can control the process in the same way as the sticky ends.
We conclude thak(y) is a regular language. O

Lemma 2. PSLC REG.

Proof. Starting from a sticker system, we construct a right-linear grammar

G’ as in the previous proof, but without using the nonterminal symbdthis
means that the rules of types 1.3), 2.2), and 3.2) become terminal rules, and the
rules of types 4.1), 4.2), and 5) are no longer used). In this way, no complete
computation iry can be continued by the corresponding derivatioirthat is

L(G) = Lp(v). Consequentlyl ,(v) € REG. O

410 L. Kari et al.

Lemma 3. BSLC REG.

Proof. We proceed as in the proof of Lemma 1, but instead of using one symbol
X we consider two nonterminalg,, X4. Then we introduce rules of type 1.3)
with both X, and Xq4 instead ofX, in rules of type 2.2) we replacé with Xq,
in rules of type 3.2) we replac¥ with X, in rules of type 4.1) we replacg
with Xy, and in rules of type 4.2) we replaee with X4; moreover, the rules of
types 2.1) and 3.1) are removed; finally, insteadXof+ \ we introduce both
rulesXqg — A and X, — .

In this way, only balanced computationsnare simulated in the obtained
grammar. Denoting this grammar 16, we obtainL(G”) = Ly(y). Therefore,
Lo(v) € REG. O

Combining the ideas of the proofs of Lemmas 2 and 3 we get:
Lemma 4. PBSLC REG.
Modulo a weak coding, the opposite inclusions are also true.

Lemma 5. Every regular language can be represented as a weak coding of a
language in SI0 PSLN BSLN PBSL

Proof. Consider a regular gramm& = (N, T, S, P), assume it\-free (at most
the A-rule S — X\ is present and the8 does not appear in the right hand side
of the rules), and construct the sticker system

’Y = (VapaA7 Bd7Bu)7

with
V. = {[X.,ai | XeN,aeT,i=12}
U {(X,a)i|XeN,aeT,i=12}
u {[Z,]1,(Z,)}, whereZ is a new symboal
p = {([Xaa]iv(xva)i)‘xeNaaeTvi:172}

U {([27]7(27))}a

A = {([S’;‘h) S—>aXeP,aeT,X€N}

[Saa]l
U {<(S’a)1)8—>aeP,aeT}
U {A|S—=XeP},

{
(X,a)]_
(0] Y_>b€|) X7Y7Y/€N7a7b€ I}

(o)
{((x,#a)) ((z#,t-)) X zac P’aET}
) (@)}

By

<(Y#b)) [X >aYeP,and Y - bY' €P
» M)2

C

C

DNA computing, sticker systems, and universality 411

{([X;ﬁa]z) <[Y;#b]l> |X >aY eP,and Y - bY €P

By

orY -beP, X,Y, Y eN,a,beT}

(") (%) 1xvacracT)
{50}

Every computation has to start by using a strin@in it continues by alternately
using elements oBy and By, and can be completed only by using the string
[Z7]
#
that contain symbols other tha# [-] or (Z,), because the relatignallows only
the matching of symbolsq, a];, (X, a); withi =j.

C

-

in By. A complete computation cannot continue further by using strings

Consider now the weak coding: <x> — T* defined by
14

[X,a]i) .
=a, forXeN,aeT,i =12,
g(<(xaa)i)

(g p=>

From the construction of and the definition ofy one can easily see that
L(G) = g(L(7)) = 9(La(G)), for all a € {p,b,pb,f }. 0

For the case of primitive computations, the proof above can be modified in
such a way to havke(G) equal to a coding of,(v): if we remove all occurrences

Z,- . .
of symbols((Z)> , <[#;]), then the computation stops when completing an

\% . . . L .
element of V) . A computation simulating a derivation @ is also balanced,

P
hence a coding also suffices for the case of primitive and balanced computations.

#
(hence we cannot avoid using a weak coding in the statement of Lemma 5),

because otherwise we can continue a computation corresponding to a derivation
[Xa a]i
_ X,a) /)~
removed even if we then use a weak coding.

In the non-primitive case we cannot avoid using sym o& y)

in G by adding further symbol) ,i = 1 2; such symbols cannot be

For a familyF of languages, we denote ycoddgF) the family of languages
of the formg(L), for L € F andg a weak coding.

Theorem 1. REG = wcodgSL) = wcodgPSL) = wcodgBSL) = wcodgPBSL).

Proof. The familyREG s closed under arbitrary morphisms, hence from Lemmas
1, 2, 3, 4 we obtainvcodgF) C REG, for F € {SL PSL BSL, BPSL}. Lemma
5 proves the opposite inclusions. O

412 L. Kari et al.

Thus, the Adleman way of computing cannot transgress the power of finite
automata.

5. Characterizing the recursively enumerable languages

We are now ready to give our main result: the fanfL is computationally
universal, in the sense thatcde(CSL) = RE. Our proof consists of two steps,
one being a modification of the classical proof of the characterization of recur-
sively enumerable languages by means of equality sets and, the other, a specific
construction with sticker systems. The essence of our proof can be described as
follows. The notion of coherence comes very close to the idea of the twin-shuffle
languages [19]. Hence, the generative capacity of the latter can be carried over
to sticker systems. We now begin the details.

From the definitions, it is clear that all languages generated by sticker sys-
tems are context-sensitive. Moreover, from the Turing-Church thesis we have the
following lemma:

Lemma 6. wcodgqCSL C RE.

In view of the fact that, at the first sight, the operation of prolongation to the
right based on matching symbols related by a complementarity relation does not
look very powerful, the following result is rather surprising.

Lemma 7. Every recursively enumerable language can be represented as a weak
coding of a language in the family CSL.

Our proof of this lemma is based on the following representation of an arbi-
trary recursively enumerable langualge- T*:

L = hr(h(E(hy, h2)) N R). 1)

whereh; and h, are two morphismsR is a regular language; (hy, hy) is the
equality set oth; andh,, andhy is a special projective morphism defined by

a, ifaeT;

hT(a):{ N ifagT.

A representation which is very similar to the above has been shown in [18], [19]:
L =hr(E(h, hz) NR). @

The difference between (1) and (2) is that (1) useshthanage of the equality
set ofh; andhy, i.e., hy(E(hg, hp)) (= ho(E(hg, hy))), but (2) uses the equality set
itself, i.e.,E(hy, hp). Unfortunately, we have found neither a proof for (1) in the
literature nor a way to derive (1) from (2) directly. We give a proof for (1) in the
following, which is a modification of the proof for (2) in [19] (Theorem 6.9).

Lemma 8. For each recursively enumerable languag€LT*, there exist two\-
free morphisms hhy : X5 — X7, a regular language RC X%, and a projection
hy : Xf — T* such that

DNA computing, sticker systems, and universality 413

L = hy(hy(E(hg, hp)) N R). 3

Proof. Let L be an arbitrary recursively enumerable language generated by a
phrase-structure grammé&r = (N, T, P, S), whereN andT are the finite sets of
nonterminals and terminals, respectivelyjs the finite set of productions:

Pi - i _>ﬂi7 i:17"'7n7

andS € N is the starting nonterminal. Without loss of generality, we assume
that for each productiop; : oy — i, 5 # A, except for the productio® — A
if AeL.

DefineT'={a’ |ae T}, T"={a”" |aec T}, andP’ ={p’ | p € P}.
Denote byV andV; the setsN UT andN U T’, respectively. For notational
purpose, we also define a morphism V* — V;* by d(A) = Afor A N and
d(a) = a’ for a € T. Note thatd is a bijection; thus, the inverse of, d—1, is
well defined.

Let

1 VUT U{B,F,$}, (4)
Y, = SUT'UPUP, %)

whereB,F, and $ are not iV, Vi, or Vo. The morphismsy, hy © X5 — X7,
depending orG, are defined by the following:

(i) hi(B) = BSS, hx(B) =B,

(i) hi($) = $ ha($) = $
(i) hi(pi) =d(5), ha(pi) = d(w), forpi :ai — G €P,
(iv) hy(p)) = G, ha(p) = d(ai), forpi :ai — G €P,
(v) hi(A) = A, ho(A) = A, for Ac N,
(vi) h(@)=a’, hy(@') =a’, fora’ e T/,
(wii) h;(@”) = a, hy(@”) = a’, fora” e T”,
(viii') hi(@) = F, hx(a) = a, foraeT,
(ix) hy($) = F, ho($) = $,
(x) hi(F) =F, hy(F) = FF.

The regular languagR is defined by the regular expression
BS($V;) $T*F".

Note thato;, 5 # A for all i above. So, both; andh, are A-free morphisms.
If A €L, then we introduce an additional symbol @ X and define

hi(@) = hx(@) =BS$F.

It is easy to see that by definirny (@) andhy,(@), we will not introduce any
other new words tdy (E(hy, hp)) N R. Therefore, we assume that¢ L in the
following arguments.

414 L. Kari et al.

We definehy : X7 — T by

a, ifaeT;

hT(a):{ N ifagT.

Now we show that the equation (3) holds.

Our proof for thatx € L impliesx € hr(hy(E(hg, h)) N R) is similar to the
one for Theorem 6.9 of [19]. So, we omit the formal proof. Instead, we use an
example to explain our idea informally. The example is a modified version of
the one from [19] (page 112).

Let L be generated by the following phrase-structure gram@iar

p1:S—ACCC, p,:CC—CD, p3:AC — a,
ps:DC — ACC, ps:ACC—>C, ps:C —b.

A derivation sequence for the woab is
S = ACCC = ACDC = aDC = aACC = aC = ab. (6)
According to this derivation sequence, we define
X = Bp$Ap,C $psDC $a’ps$a’psC $a’’ pe abFFF.
By the above definitions df; andh,, we have
hi(x) = ho(x) = BSSACCCSACDCSa’DC $a’ ACCSa’ C $abFFFFFF.

Then, clearly,x € E(hg,hp), hi(X) € R, and hr(hy(x)) = ab. Thus,ab €
hr (M (E(he, h)) NR).

Conversely, letw € hy(hy(E(h, hy)) N R), i.e., w = hy(y) for somey €
h;(E(hz, hp)) N R. Then by the definition oR, y is in the form

BS3y:y. .. SyiF',

whereys,...,¥i—1 € Vi, yy € T*, andl > 0. Lety = hy(x) for somex €
E(hy, hy). Then
X = B $%0$. . . 3P Xa F™

such thathy(xy) = S, hi(%) = ha(X+1) =y, for L < i < t,andl = 2m
and hy(x+1) = F™ 1. Note that ifx = X+ for somej, 1 <j < t, then we
can construct a new worg’ by deletingx $ from x so thathr(hi(x’) N R) =
hr(hi(x) " R) = w. So, without loss of generality, we assume tRag x;+1 for
allj, 1<j <t. (Itis clear that # x+1). Then the following are clear:

(1) y=p (orxy =p’ if t =1) for somep : S — ~ in P,

(2) x e ViUP)*P(VLuUP)*, for2<i <t,

() x € (V2UP)",

(4) Xe+1 € TF,

(5) hi(x) =yi andhy(x) =y 1, for 1L <i <t (letting yo = S).

DNA computing, sticker systems, and universality 415

By (2) and (5) above andii() of the definition ofh; andh, it follows that
d=Y(yi—1) =5 d (),

2 <i <t—1. Note also tha =¢ d~1(y;) andd~Y(yi_1) =& W. Therefore,
we haveS =§ v, i.e., ¥t € L. Sincew = hr(y) = y;, we have proved that
w € L. U

Proof of Lemma 7Let L C T* be an arbitrary recursively enumerable language.
By Lemma 8,L = hr(hy(E(hy, hp)) N R) for some A-free morphismshy, h, :
X5 — X%, regular languag® C X5, and projectiorhy : X7 — T* defined by

X, ifXeT,
A, otherwise,

e (X) :{

Let ¥, = {bg,by,...,bh_1}, for some integern > 0, and R be ac-
cepted by a deterministic finite automatéh = (Q, X'1,4,0q;, F), whereQ =
{%0, a1, --,0m-1}, for somem > 0. We construct the sticker system

,-y: (VapaA7BdaBu)

where

V:ElUQU{[Q7J]|q€Q70§J Sm—l},

p={X,X) | X € X1} uU{(q,q),(qa;i],9),(a,[a,KD, (a,j],[a,k]) | a € Q,
0<j,k<m-1},

= {(5))
o) (o) (0) (0 (2) (6 (0)

o) () ()

adp...q = hp(b), b €27 0<j<m-1,
(Gl A+1) = G, 0< k <t} U

#\ [#
) [{(]Qi)l(q)iqie':}' |
GGG
(o) Ca) (%) |
aap...a; =), b€ X 0<j <m-1,
6(qia_, 8cr1) = iy L <k <t} U
{(3)]acF}

Note that each string d84 or B, contains an integgr, 0 <j < m, which is
paired with the state that appears first (from the left) in the string. The function
of this integer will become clear later.

416 L. Kari et al.

Denote byrq(i,j,k), 0<i <nand 0< j,k < m, a string inBy which is
constructed with the word,(b;) and the state); as the first state that is paired
with the integerk. Similarly, denote by, (i,]j, k) a string inBy.

Assume thaf containsl > 0 states and

F= {fo,fl, Ce ,f|,1}, I <m.
. . #
Then we denote byy(n, 0,]) the string <f
j
f
#
It is clear thatcard(By) = card(B,) = nn¥ +1. Define the labelling mappings
€ : By — {1,...,card(By)} by

) (f) and byr(n,j,0) the string
j

ea(ra(i,j, k) =i-m’+j.-m+k+1
ande, : B, — {1,...,card(B,)} by
eu(ru(i,j, k) =i -m2+k-m+j+1

Let u denote a string irA. By the above construction of, it is clear that
u == z if and only if there is a sequence

Gi,uqi, 2. . . Oi,_, &0

such that (1)g, = o, i, € F, andd(q_,,a) = o,; and (2) there ix € X3
such thath;(x) = hy(x) = aqa, . . . &.

*

Consider also the weak coding: <x> — T* defined by
P

(@)= a, fa=pg=a,acT,
PN\ p)’ 71 A otherwise

We show thaty(Lc(7)) = hr (hi(E(hs, h2)) N R) in the following.

Let w € hr(hi(E(hs, h2)) N R). Then there exisk = by by, ... b, € E(hy, hy)
andy = hy(x) = hy(x) such thaty € R andw = hy(y). Lety = aya,...4&.
Then we have a state sequenggq,, . . ., g, of M such thatg;, = g, ., =
fr € F for somer, 0 <r < |, andd(q,, &) = g, for 1 < k < t. Note that
hi(x) = ha(by,) ... (b)) = a1...&. Let y(by,) = @, - - - 8gp—-1, 1 < kK < 5,
and hy(bi) = a,, ...a. Similarly, lethy(b,) = ag, ...ag,,-1, 1 < k <'s, and
ho(bi,) = ag,...&. Then, there exists a computati@ such thatD uses the
following strings fromBy:

rd(i17jﬁl7ja1+1)a ey rd(iS7jﬁsajas+1)7 rd(n7 Oa r)
and the following fromBy:

ru(ilaja1+lajﬁ1)v ey ru(i37jas+l»jﬁs)7 ru(na r, 0)

DNA computing, sticker systems, and universality 417

Let the result of the computatidd bez. Clearly, by the definition of, g(z) = w.
It is also easy to see tha§(D) = e,(D) by the definitions oy ande,.

We now show that ifiw € g(Lc(v)), thenw € hy(hi(E(hg, h2)) NR). We have
w € g(z) for somez that is the result of a computati@ of v ande, (D) = e4(D).
By the construction of the sticker systemmone can observe thatcorresponds
to a sequence

Gis A1, Giys A2, - - -5 Uiy, G, G

whereq;, = do, g, € F, anddé(q,_,,a) = 0, for 1 <k <t. Then itis clear that
aa, . ..a € R. By the definition ofBy andB, and the fact thag,(D) = e4(D),
it follows that a;a, ... a; = hy(x) = hy(x) for somex € X,. Denoteaja,. .. &
by y. Then,y € hi(E(h;,hy)) N R. It is easy to show thaty = g(z) = hy(y).
Therefore,w € hr(hy(E(hg, hp)) N R). O

From Lemmas 6 and 7 we get
Theorem 2. RE = wcodgCSL).

6. An intermediate case

For the fair computations we have
Theorem 3.REG C wcodgFSL) C RE.

Proof. The inclusionREG C wcodgFSL) follows from the proof of Lemma 5.
For the strictness, let us consider the sticker system

’Y = N7p7A7 deBU)a
V ={a,a’,b,b’},
p={(a,a),(b,b")},

A={(5)).
~={(2) (5) (5)}
~={36) ()}

: . . S #
Starting with the unique axiom iA, we have to us ol from By and we

obtain a blunt sequence. We can continue with any stririgyiandB,. However,
due to the complementarity restrictions, if a symbar b’ is introduced, then we

. . : # b . -
have to continue by using composite symbélg/) and (#) until obtaining
again a blunt sequence.

. . a*
Thus, let us intersect the languabg() with the regular Ianguagéa,)

b\ _ - _ a2l /b 2"
(b’) . We obtain a language consisting of strings of the f rg)) <b’> ,
n,m > 1, produced by computations where

418 L. Kari et al.

— the first string inBy is used 2 + 1 times,

— the second string iBy is usedm times,

— the first string inB, is usedn times (one occurrence @& is introduced by
the axiom),

— the second string iB,, is used 2n times.

Due to the fairness, we must have
2n+1+m=n+2m,

which means that
n=m-1
b

2m
b’) | m > 1} is not a regular one, hendg(y) is

2m—1
The Ianguage{(:,) <
not regular.

From the Turing-Church thesis we haueodgqFSL) C RE. For the strict-
ness, we shall prove thabcodgFSL) C MAT?, where MAT* is the family
of languages generated by context-free matrix grammars with arbitrary rules.
BecauseVIAT* c RE ([6], [8]), we obtainwcodgFSL) ¢ RE.

Consider a sticker system= (V, p, A, By, B,). Define

V' = {a'|aeV},
LA = {lan,bi]...[ablaw . aur | KT > 0k+r > 1,

() ())3 em

U {las,b]. . [a, blbges - - by [K1 >0k +1 > 1,

B D)) ()ew

U {A]XeA}

L(By) = {bi...b;|k>1,<#)...<#)eBd},
by b
L(B,) = {al...ak|k21,(11)...<1k)eBu}.

Consider the new symboks d, d’ and construct the languages

Ly ={xd" | x € L(By)}",
Lo = {xd | x € L(B,)}",
Ly =Ly Wch,
S=Lolic’,
Ls = (LA)L, W L) N {[a,b'] | a,b € VI* (W' U {cd’, dc})*.

(W is the shuffle operationk Ly = {Xay1...XaYn | N > 1, X = X1...%n,
Y=Y1---Yn, %, ¥ € V5, 1<i <n})

DNA computing, sticker systems, and universality 419

Clearly, L1, L, are regular languages, hence alspis regular: the family
REG is closed under the shuffle operation and under intersection.
Consider the gsn® which:

— leaves unchanged the symbadisy’],a,b € V,
— replaces each paab’ by [a,b’],a,b eV,
— replaces each paid’ by [c,d’] and each paidc by [d, c].

The languag&)(L3) is also regular, over the alphabet
U ={[a,b]]a,beV}uU{[c,d],I[d,c]}.

Let G = (N,U,S,P) be a regular grammar fa@(L3) and construct the matrix
grammar

! — li V /
G _(N7(V)pvva)7
where
N’ = NuUU{S},
M = {8 —=9S)u{l)|repP}

C

((a,b'] — (E)) la,beV)
(e, d'] = A [d,c] =)}

C

. . . AN
It is easy to see that(G’) contains all the strings € (V) such thax =* w

in v, x € A, and this is a fair derivation: the matrixc([d/p] — A\ J[d,c] = N
checks whether or not the number of symbdlandd’ is the same.

The familyMAT* is closed under arbitrary morphisms ([5]), hence the image
by a weak coding of+(y) is in the family MAT?. O

Open problemls the familyFSLincluded in the family of context-free languages
(or even in the family of linear languages) ?

7. Final remarks

We have found characterizations of famili&EG and RE using variants of
sticker systems. Several further research directions are of interest:

e Define variants of sticker systems which characterize families of languages
different from REG and RE.

e Look for universal sticker systems, in the sense of universal Turing machines.
This is important to the construction of universal gomgrammableDNA
sticker systems.

e Look for other variants which characteriRE, but not using the coherence
restriction. This is again important to finding “realistic’ models of DNA
computers based on the sticker operation.

420 L. Kari et al.

e Investigate the descriptional complexity (the size) of sticker systems and
languages. Several parameters are very natural: the number of axioms, the
length of the longest axiom, the number of elements in the BgtB,, the
length of the longest string iBy, B,, etc. Do these measures give infinite
hierarchies of sticker languages?

References

1. L. M. Adleman: Molecular computation of solutions to combinatorial problems, Science, 226
(Nov. 1994), 1021 — 1024.

2. L. M. Adleman: On constructing a molecular computer. In: R.J. Lipton, E.B. Baum (eds.) DNA
Based Computers, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
27, American Math. Soc., 1996 — 22.

3. E. Csuhaj-Varju, L. Freund, L. Kari, GhaBn: DNA computing based on splicing: universality
results, First Annual Pacific Symp. on Biocomputing, Hawaii, Jan. 1996.

4. K. Culik II: A purely homomorphic characterization of recursively enumerable sets, Journal of
the ACM 26 (1979) 345-350.

5. J. Dassow, Gh.&in: Regulated Rewriting in Formal Language Theory. Berlin Heidelberg New
York: Springer, 1989.

6. J. Dassow, Gh.&un, A. Salomaa: Grammars with controlled derivations. In: G. Rozenberg, A.
Salomaa (eds.) Handbook of Formal Languages. Berlin Heidelberg New York: Springer, 1997.

7. R. Freund, L. Kari, Gh. &n: DNA computing based on splicing: The existence of universal
computers, Technical Report 185-2/FR-2/95, TU Wien, 1995.

8. D. Hauschild, M. Jantzen: Petri nets algorithms in the theory of matrix grammars, Acta Infor-
matica, 31 (1994), 719 — 728.

9. T. Head: Formal language theory and DNA: an analysis of the generative capacity of specific
recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 — 759.

10. T. Head, Gh. &un, D. Pixton: Language theory and molecular genetics. Generative mechanisms
suggested by DNA recombination. In: G. Rozenberg, A. Salomaa (eds.) Handbook of Formal
Languages. Berlin Heidelberg New York: Springer, 1997.

11. R. J. Lipton: Using DNA to solve NP-complete problems, Science, 268 (Apr. 1995), 542 — 545.

12. R. J. Lipton: Speeding up computations via molecular biology. In: R.J. Lipton, E.B. Baum (eds.)
DNA Based Computers, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 27, American Math. Soc., 1996, 67 — 74.

13. Gh. Fun: Splicing. A challenge to formal language theorists, Bulletin EATCS, 57 (1995), 183
—194.

14. Gh. Fwun: Regular extended H systems are computationally universal, J. Automata, Languages
and Combinatorics, 1, 1 (1996), 27 — 36.

15. Gh. Faun, G. Rozenberg, A. Salomaa: Computing by splicing, Theor. Computer Sci., 168 (1996),
321 — 336.

16. Gh. Run, A. Salomaa: DNA computing based on the splicing operation, Mathematica Japonica,
43, 3 (1996), 607 — 632.

17. A. Salomaa: Formal Languages. New York, London: Academic Press, 1973.

18. A. Salomaa: Equality sets for homomorphisms of free monoids, Acta Cybernetica 4 (1978)
127-139.

19. A. Salomaa: Jewels of Formal Language Theory. Rockville, MD: Computer Science Press,
1981.

